Category: Physics

CMS Collaboration observes new all-heavy quark structures

For over a decade, the CMS Collaboration, a large team of researchers based at different institutes worldwide, has been analyzing data collected at the Compact Muon Solenoid, a general-purpose particle detector at CERN’s Large Hadron Collider (LHC). This large-scale international scientific collaboration has been trying to observe various elusive physical phenomena, including exotic particles and dark matter candidates.
Read More

Record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device achieved

In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated the ability to make a thermal fusion plasma with electron temperatures hotter than 10 million degrees Celsius, roughly the temperature of the core of the sun. Zap Energy’s unique approach, known as a sheared-flow-stabilized Z pinch, has now joined those rarefied ranks, far exceeding this plasma temperature milestone in a device that is a fraction of the scale of other fusion systems.
Read More

Study uses thermodynamics to describe expansion of the universe

The idea that the universe is expanding dates from almost a century ago. It was first put forward by Belgian cosmologist Georges Lemaître (1894–1966) in 1927 and confirmed observationally by American astronomer Edwin Hubble (1889-1953) two years later. Hubble observed that the redshift in the electromagnetic spectrum of the light received from celestial objects was directly proportional to their distance from Earth, which meant that bodies farther away from Earth were moving away faster and the universe must be expanding.
Read More

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic vibrations, and then forward the data with new light sources when needed again. The results demonstrate that mechanical memory for quantum data could be the strategy that paves the way for an ultra-secure internet with incredible speeds.
Read More

Machine learning could help reveal undiscovered particles within data from the Large Hadron Collider

Scientists used a neural network, a type of brain-inspired machine learning algorithm, to sift through large volumes of particle collision data. Particle physicists are tasked with mining this massive and growing store of collision data for evidence of undiscovered particles. In particular, they’re searching for particles not included in the Standard Model of particle physics, our current understanding of the universe’s makeup that scientists suspect is incomplete.
Read More

Designing a cost-effective X-ray free electron lasers facility

Many advances in structural science since the 1970s were made by probing materials with synchrotron radiation: that is, high energy X-rays generated through accelerating high-energy electrons. The latest generation of such sources, X-ray free electron lasers (XFEL), are far more powerful than their predecessors but are only accessible to international consortia and a few rich countries because of their high cost.
Read More

Searching for new asymmetry between matter and antimatter

Once a particle of matter, always a particle of matter. Or not. Thanks to a quirk of quantum physics, four known particles made up of two different quarks—such as the electrically neutral D meson composed of a charm quark and an up antiquark—can spontaneously oscillate into their antimatter partners and vice versa.
Read More

Evidence of a new subatomic particle observed

The BESIII collaboration have reported the observation of an anomalous line shape around ppbar mass threshold in the J/ψ→γ3(π+π-) decay, which indicates the existence of a ppbar bound state. The paper was published online in Physical Review Letters.
Read More

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors

Optical sensors serve as the backbone of numerous scientific and technological endeavors, from detecting gravitational waves to imaging biological tissues for medical diagnostics. These sensors use light to detect changes in the properties of the environment they’re monitoring, including chemical biomarkers and physical properties like temperature. A persistent challenge in optical sensing has been enhancing sensitivity to detect faint signals amid noise.
Read More

Simulating magnetization in a Heisenberg quantum spin chain

The rapid progress of quantum simulators is now enabling them to study problems that before have been limited to the domain of theoretical physics and numerical simulation. A team of researchers at Google Quantum AI and their collaborators showed this novel capability by studying dynamics in 1D quantum magnets, specifically chains of spin-1⁄2 particles.
Read More

An ultracompact multimode meta-microscope

Versatility and miniaturization of imaging systems are of great importance in today’s information society. Microscopic imaging techniques have always been indispensable for scientific research and disease diagnosis in the biomedical field, which is also stepping towards the integration, portable, and multi-functions.
Read More
Loading

Support The Mission

This site is free for all to use and enjoy. If you would like to support the mission... SHARE this site with a friend. THEN, follow the links below where you can buy books, unique art and things for your home and office by our founder, Kathryn Colleen PHD RMT.

BOOKS | 3D ART | HOME/OFFICE